Probing the cell membrane by magnetic particle actuation and Euler angle tracking.
نویسندگان
چکیده
The mechanical properties of the cell membrane and the subjacent actin cortex are determinants of a variety of processes in immunity and cell division. The lipid bilayer itself and its connection to the actin cortex are anisotropic. An accurate description of the mechanical structure of the cell membrane and the involved dynamics therefore necessitates a measurement technique that can capture the inherent anisotropy of the system. Here, we combine magnetic particle actuation with rotational and translational particle tracking to simultaneously measure the mechanical stiffness of monocytic cells in three rotational and two translational directions. When using particles that bind via integrins to the cell membrane and the subjacent cortex, we measured an isotropic stiffness and a characteristic power-law dependence of the shear modulus on the applied frequency. When using particles functionalized with immunoglobulin G, we measured an anisotropic stiffness with a 10-fold-reduced value in one dimension. We suggest that the observed reduced stiffness in the plane of the cell membrane is caused by a local detachment of the lipid bilayer from the subjacent cytoskeletal cortex. We expect that our technique will enable new insights into the mechanical properties of the cell membrane that will help us to better understand membrane processes such as phagocytosis and blebbing.
منابع مشابه
Tracking and Shape Control of a Micro-cantilever using Electrostatic Actuation
In this paper the problems of state estimation, tracking control and shape control in a micro-cantilever beam with nonlinear electrostatic actuation are investigated. The system’s partial differential equation of motion is converted into a set of ordinary differential equations by projection method. Observabillity of the system is proven and a state estimation system is designed using extended ...
متن کاملA study of magnetic drift motion of particles around the equatorial plasmapause by using the cluster observation
On August 7, 2003 the Cluster spacecraft moved through the dayside magnetosphere. The energetic particle spectrometer on board Cluster provided measurements of an extensive range of energy. Besides, satellite measurements of geomagnetic field showed a gradient magnetic field. It is known that an inhomogeneity of the magnetic field leads to a drift of charged particles. In this paper, the drift ...
متن کاملOptimizing the actuation of musculoskeletal model by genetic algorithm to simulate the vertical jump
In human body movement simulation such as vertical jump by a forward dynamic model, optimal control theories must be used. In the recent years, new methods were created for solving optimization problems which they were adopted from animal behaviors and environment events such as Genetic algorithm, Particle swarm and Imperialism competitive. In this work, the skeletal model was constructed by Ne...
متن کاملA New Maximum Power Point Tracking Method for PEM Fuel Cells Based On Water Cycle Algorithm
Maximum Power Point (MPP) tracker has an important role in the performance of fuel cell (FC) systems improvement. Tow parameters which have effect on the Fuel cell output power are temperature and membrane water. So contents make the MPP change by with variations in each parameter. In this paper, a new maximum power point tracking (MPPT) method for Proton Exchange Membrane (PEM) fuel cell is pr...
متن کاملNpgrj_nmeth_1176 1..3
We combined photoactivated localization microscopy (PALM) with live-cell single-particle tracking to create a new method termed sptPALM. We created spatially resolved maps of single-molecule motions by imaging the membrane proteins Gag and VSVG, and obtained several orders of magnitude more trajectories per cell than traditional single-particle tracking enables. By probing distinct subsets of m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 102 3 شماره
صفحات -
تاریخ انتشار 2012